Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24655, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298628

ABSTRACT

The main function of the renin-angiotensin-aldosterone system (RAAS) is the regulation of blood pressure; therefore, researchers have focused on its study to treat cardiovascular and renal diseases. One of the most widely used treatments derived from the study of RAAS, is the use of angiotensin-converting enzyme inhibitors (ACEi). Since it was discovered, the main target of ACEi has been the cardiovascular and renal systems. However, being the RAAS expressed locally in several specialized tissues and cells such as pneumocytes, hepatocytes, spleenocytes, enterocytes, adipocytes, and neurons the effect of inhibitors has expanded, because it is expected that RAAS has a role in the specific function of those cells. Many chronic degenerative diseases compromise the correct function of those organs, and in most of them, the RAAS is overactivated. Therefore, the use of ACEi must exert a benefit on an impaired system. Accordingly, the objective of this review is to present a brief overview of the cardiovascular and renal actions of ACEi and its effects in organs that are not the classic targets of ACEi that carry on glucose and lipid metabolism.

2.
PPAR Res ; 2021: 8895376, 2021.
Article in English | MEDLINE | ID: mdl-33505452

ABSTRACT

Lesions caused by high glucose (HG), hypoxia/reperfusion (H/R), and the coexistence of both conditions in cardiomyocytes are linked to an overproduction of reactive oxygen species (ROS), causing irreversible damage to macromolecules in the cardiomyocyte as well as its ultrastructure. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, promotes beneficial activities counteracting cardiac injury. Therefore, the objective of this work was to determine the potential protective effect of fenofibrate in cardiomyocytes exposed to HG, H/R, and HG+H/R. Cardiomyocyte cultures were divided into four main groups: (1) control (CT), (2) HG (25 mM), (3) H/R, and (4) HG+H/R. Our results indicate that cell viability decreases in cardiomyocytes undergoing HG, H/R, and both conditions, while fenofibrate improves cell viability in every case. Fenofibrate also decreases ROS production as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH) subunit expression. Regarding the antioxidant defense, superoxide dismutase (SOD Cu2+/Zn2+ and SOD Mn2+), catalase, and the antioxidant capacity were decreased in HG, H/R, and HG+H/R-exposed cardiomyocytes, while fenofibrate increased those parameters. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) increased significantly in treated cells, while pathologies increased the expression of its inhibitor Keap1. Oxidative stress-induced mitochondrial damage was lower in fenofibrate-exposed cardiomyocytes. Endothelial nitric oxide synthase was also favored in cardiomyocytes treated with fenofibrate. Our results suggest that fenofibrate preserves the antioxidant status and the ultrastructure in cardiomyocytes undergoing HG, H/R, and HG+H/R preventing damage to essential macromolecules involved in the proper functioning of the cardiomyocyte.

3.
Molecules ; 24(2)2019 Jan 12.
Article in English | MEDLINE | ID: mdl-30642049

ABSTRACT

Myocardial infarction (MI) initiates an inflammatory response that promotes both beneficial and deleterious effects. The early response helps the myocardium to remove damaged tissue; however, a prolonged later response brings cardiac remodeling characterized by functional, metabolic, and structural pathological changes. Current pharmacological treatments have failed to reverse ischemic-induced cardiac damage. Therefore, our aim was to study if clofibrate treatment was capable of decreasing inflammation and apoptosis, and reverse ventricular remodeling and MI-induced functional damage. Male Wistar rats were assigned to (1) Sham coronary artery ligation (Sham) or (2) Coronary artery ligation (MI). Seven days post-MI, animals were further divided to receive vehicle (V) or clofibrate (100 mg/kg, C) for 7 days. The expression of IL-6, TNF-α, and inflammatory related molecules ICAM-1, VCAM-1, MMP-2 and -9, nuclear NF-kB, and iNOS, were elevated in MI-V. These inflammatory biomarkers decreased in MI-C. Also, apoptotic proteins (Bax and pBad) were elevated in MI-V, while clofibrate augmented anti-apoptotic proteins (Bcl-2 and 14-3-3ε). Clofibrate also protected MI-induced changes in ultra-structure. The ex vivo evaluation of myocardial functioning showed that left ventricular pressure and mechanical work decreased in infarcted rats; clofibrate treatment raised those parameters to control values. Echocardiogram showed that clofibrate partially reduced LV dilation. In conclusion, clofibrate decreases cardiac remodeling, decreases inflammatory molecules, and partly preserves myocardial diameters.


Subject(s)
Clofibrate/pharmacology , Hypolipidemic Agents/pharmacology , Inflammation/pathology , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Ventricular Remodeling/drug effects , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Inflammation Mediators/metabolism , Myocardial Infarction/metabolism , PPAR alpha/metabolism , Rodentia
4.
J Am Soc Nephrol ; 29(7): 1838-1848, 2018 07.
Article in English | MEDLINE | ID: mdl-29848507

ABSTRACT

Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle's loop controls Ca2+ excretion and NaCl reabsorption in response to extracellular Ca2+ However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss.Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well.Results Thiazide-sensitive 22Na+ uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd3+ In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC.Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca2+ reabsorption, further promoting hypercalciuria.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Receptors, Calcium-Sensing/metabolism , Receptors, G-Protein-Coupled/metabolism , Sodium/metabolism , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Enzyme Activation/genetics , HEK293 Cells , Humans , Imidazoles/pharmacology , Male , Mice , Microfilament Proteins , Oocytes , Phenethylamines/pharmacology , Phosphorylation/drug effects , Propylamines/pharmacology , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Pyrrolidines/pharmacology , Receptors, Calcium-Sensing/genetics , Signal Transduction , Solute Carrier Family 12, Member 1/antagonists & inhibitors , Solute Carrier Family 12, Member 1/metabolism , Solute Carrier Family 12, Member 3/metabolism , Transfection , Xenopus Proteins/metabolism , Xenopus laevis
5.
J Hypertens ; 36(2): 361-367, 2018 02.
Article in English | MEDLINE | ID: mdl-28877076

ABSTRACT

OBJECTIVE: The hypertensive effect of angiotensin II (AngII), a peptide hormone, is dependent on its intrarenal actions and the activation of the renal Na-Cl cotransporter (NCC), by AngII requires integrity of the with no lysine kinase/STE20-proline alanine-rich kinase (WNK/SPAK) signaling pathway. Here, we analyzed if the integrity of the WNK/SPAK pathway is required for AngII infusion to induce arterial hypertension. METHODS: We tested the effect of AngII or aldosterone administration on the blood pressure and on pNCC/NCC ratio in SPAK knock-in mice in which the kinase and thus NCC cannot be activated by WNK kinases. AngII or aldosterone was infused at 1440 or 700 µg/kg per day, respectively, for 14 days using osmotic minipumps. The aldosterone-treated mice were exposed to NaCl drinking water (1%) during the hormone administration. The arterial blood pressure was assessed using radiotelemetry. RESULTS: We observed that in the SPAK knock-in mice, the AngII-induced hypertensive effect was significantly reduced and associated with an absence of AngII-induced NCC phosphorylation. In contrast, the hypertensive effect of aldosterone was enhanced and was related with an increased response to amiloride, but not to thiazide-type diuretics, without a significant increase in NCC phosphorylation. CONCLUSION: Our data suggest that AngII-induced hypertension requires, at least partly, NCC activation via the WNK/SPAK signaling pathway, whereas aldosterone-induced hypertension depends on epithelial sodium channel activation in a WNK/SPAK-independent manner. SPAK knock-in mice emerge as a useful model to distinguish between the effects of AngII and aldosterone on distal nephrons.


Subject(s)
Aldosterone/pharmacology , Angiotensin II/pharmacology , Hypertension/metabolism , Protein Serine-Threonine Kinases/metabolism , Solute Carrier Family 12, Member 3/metabolism , Amiloride/pharmacology , Animals , Blood Pressure/drug effects , Diuretics/pharmacology , Epithelial Sodium Channels/metabolism , Gene Knock-In Techniques , Hypertension/chemically induced , Male , Mice , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Sodium Chloride Symporter Inhibitors/pharmacology
6.
Pharmacol Rep ; 68(4): 692-702, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27110876

ABSTRACT

BACKGROUND: Arterial high blood pressure is a risk factor for target organ damage; the most susceptible organs are the arteries, brain, kidneys, and heart. The damage mechanisms include oxidative stress and renin-angiotensin system (RAS) overactivity. Therefore, our aim was to study whether clofibrate-induced peroxisome proliferator-activated receptor-alpha (PPAR-α) stimulation is able to prevent alterations in cardiac functioning derived from RAS overstimulation in the left ventricle of rats with hypertension secondary to aortic coarctation and to improve antioxidant defenses. METHODS: Male Wistar rats were assigned to Control (Sham)- or aortic coarctation-surgery and further divided to receive (1 or 21 days) vehicle, clofibrate (100mg/kg), captopril (20mg/kg), or clofibrate+captopril. The left ventricle was obtained to measure: angiotensin II and -(1-7), AT1 and AT2 receptors, angiotensin converting enzyme (ACE)-1 and -2, and MAS receptor; the activity and expression of superoxide dismutase, catalase, endothelial nitric oxide synthase, the production of reactive oxygen species (ROS) and peroxidated lipids; as well as ex vivo cardiac functioning. RESULTS: Clofibrate decreased angiotensin II, AT1 receptor and ACE expression, and raised angiotensin-(1-7), AT2 receptor, ACE-2 expression, superoxide dismutase and endothelial nitric oxide synthase participation. These effects promoted lower coronary vascular resistance and improved mechanical work compared to aortic coarctated vehicle-treated rats. CONCLUSIONS: Clofibrate-induced PPAR-α stimulation changes the angiotensin II receptor profile, favors the ACE2/angiotensin-(1-7)/AT2 receptor axis decreasing the vasoconstrictor environment, activates the antioxidant defense, and facilitates endothelial nitric oxide synthase activity favoring vasodilation. This may represent a protection for the stressed heart.


Subject(s)
Antioxidants/pharmacology , Clofibrate/pharmacology , Heart Ventricles/physiopathology , Hypertension/physiopathology , PPAR alpha/agonists , Vasodilation/drug effects , Angiotensin I/metabolism , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Aortic Coarctation/complications , Aortic Coarctation/physiopathology , Captopril/pharmacology , Catalase/metabolism , Drug Synergism , Lipid Peroxidation/drug effects , Male , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Rats , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System/drug effects , Superoxide Dismutase/metabolism
7.
J Cardiovasc Pharmacol ; 65(5): 430-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25658458

ABSTRACT

We have recently demonstrated that peroxisome proliferator-activated receptor alpha (PPARα) stimulation lowers the production of angiotensin II while increasing the production of Ang-(1-7), both in cardiac and plasmatic level. This stimulation improves nitric oxide bioavailability, preserving cardiac histologic features and functioning. Based on these results, we decided to study the effect of PPARα stimulation on renin-angiotensin system components of ischemic myocardium. Male Wistar rats (weighing 300-350 g) were assigned to the following groups: (1) sham, (2) myocardial ischemia vehicle-treated (MI-V), and (3) myocardial ischemia clofibrate-treated. Expression of the angiotensin-converting enzyme increased during ischemia, whereas clofibrate-treated group remained comparable to control. Activation of the PPARα receptor stimulated the expression of angiotensin-converting enzyme-2; while the activity of this enzyme was increased in MI-V, clofibrate inhibited any change. The concentration of bradykinin and phospho-Akt(SER473) in homogenate increased in the animals treated with the drug. Mas receptor expression increased in MI-V rats. In conclusion, stimulation of PPARα by clofibrate prevents an increase in the activity of renin-angiotensin system and promotes the production of vasodilator substances.


Subject(s)
Clofibrate/pharmacology , Myocardial Ischemia/drug therapy , Myocardium/metabolism , PPAR alpha/agonists , Renin-Angiotensin System/drug effects , Angiotensin-Converting Enzyme 2 , Animals , Bradykinin/metabolism , Disease Models, Animal , Enzyme Activation , Male , Myocardial Ischemia/metabolism , Myocardial Ischemia/physiopathology , PPAR alpha/metabolism , Peptidyl-Dipeptidase A/metabolism , Phosphorylation , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Receptors, G-Protein-Coupled/metabolism , Serine , Signal Transduction/drug effects , Vasodilation/drug effects
8.
Eur J Pharmacol ; 627(1-3): 185-93, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-19857485

ABSTRACT

Peroxisome proliferator activated receptors (PPARs) are a family of nuclear receptors that, upon activation with selective ligands, work as transcription factors. Recently, these have been related with the cardiovascular system. Our aim was to study PPARalpha-stimulation and its effects on blood pressure in rats with aortic coarctation, and to explore the role of the antioxidant system. Male Wistar rats (250-280 g) were distributed into the following groups: 1) sham; 2) aortic coarctated-vehicle-treated (AoCo-V), and 3) AoCo-clofibrate (100mg/kg) treated (AoCo-C). Rats were treated for 1 or 21 days. Clofibrate lowered blood pressure in both 1- and 21-day treatments. Renal reactive oxygen species increased after 1 day in AoCo-V, while clofibrate prevented this effect. Superoxide dismutase (SOD)-1 expression increased 3.6-fold upon PPARalpha stimulation (1 day) and returned to normal values by day 21. SOD-1 activity increased slightly in response to clofibrate. Renal activity of catalase increased in AoCo-C (1 day) and returned to normal (21 days). eNOS expression was not modified acutely (1 day) but increased at 21 days of treatment with clofibrate. Angiotensin II AT(1)-receptor expression as well as angiotensin II decreased in clofibrate-treated rats, while angiotensin II AT(2)-receptor expression increased, in both treatment periods. Angiotensin-(1-7) increased at 21 days. Our results suggest that in the early development of AoCo-induced hypertension, stimulation of PPARalpha increases the antioxidant defenses, leading to improvement in endothelial factors while in the sub-chronic phase (21 days), eNOS and angiotensin II receptors appear to play major roles in controlling blood pressure.


Subject(s)
Blood Pressure , PPAR alpha/metabolism , Angiotensin II/metabolism , Animals , Antioxidants/pharmacology , Aortic Coarctation/complications , Blood Pressure/drug effects , Clofibrate/administration & dosage , Clofibrate/pharmacology , Gene Expression Regulation/drug effects , Hypertension/etiology , Hypertension/metabolism , Hypertension/physiopathology , Lipid Peroxidation/drug effects , Male , Nitric Oxide Synthase Type III/metabolism , Oxidoreductases/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Receptors, Angiotensin/metabolism , Superoxide Dismutase/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...